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Abstract

In this paper the free vibrations of a linear, single degree of freedom oscillator with a (periodically and stepwise

changing) time-varying mass have been studied. Not only solutions of the oscillator equation have been constructed, but

also stability diagrams for the free vibrations have been presented for various parameter values.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the mechanics of solids and mass-points, numerous applied problems can be found in which material is
expelled from a reservoir, or in which material is captured and afterwards transported by some mechanism.
Such systems with time-varying mass occur in robotics, rotating crankshafts, conveyor systems, excavators,
cranes, biomechanics, and in fluid–structure interaction problems [1,2]. Mechanical systems with a heavy mass
and relatively soft spring can be successfully approximated by a single degree of freedom oscillator (sdofo).
The oscillations of electric transmission lines and cables of cable-stayed bridges with water rivulets on their
surface are also examples of time-varying dynamic systems [3]. For those constructions the 1-mode Galerkin
approximation of the continuous model will lead to a sdofo-equation.

Sdofos are considered as a representative model for testing the numerical behaviour of new computational
algorithms with respect to different types of constructions and to the forces which are acting on the system [4].
Especially in the field of aerospace and astronautic engineering, such systems are of interest as they, usually
involve a very high computer time.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In this paper the free oscillations of a linear sdofo with a (periodically and stepwise changing) time-varying
mass will be studied. Not only solutions of this linear oscillator equation will be constructed, but also stability
diagrams for the free oscillations will be presented.

Let us consider the oscillations of a sdofo-system with a linear restoring force. The mass of this system is
allowed to vary in time according to the periodic stepwise dependence. This model is perhaps the simplest
model which describes the process of the vibrations of a cable (cylinder) with rainwater located on it.
Raindrops hitting the oscillator may form a water ridge on the oscillator. However, in a stationary situation
the mass flow of incoming raindrops hitting the oscillator and the mass flow of raindrops shaken off will be
equal. If these mass flows are not equal then the mass of raindrops attached to the oscillator varies in time.
Part of the raindrops hitting the cylinder will remain on the surface of the cylinder for some time, and will
subsequently be blown or shaken off after some time. It will be assumed when mass is added to or separated
from the oscillator that the position of the centre of the (total) mass of the oscillator is not influenced. The
following equation of motion for the sdofo can now be derived (see for instance Ref. [1, p. 152]):

M €y ¼ _Mðw� _yÞ � kyþ F , (1)

where y ¼ yðtÞ is the displacement of the oscillator (see Fig. 1), M ¼MðtÞ is the time-varying mass of the
oscillator, w ¼ wðtÞ is the mean velocity at which masses (i.e. raindrops) are hitting or leaving the oscillator, k

is the (positive) stiffness coefficient in the linear restoring force, F ¼ F ðtÞ or F ¼ F ðt; y; _yÞ is an external force,
and the dot denotes differentiation with respect to t. An historical overview to obtain Eq. (1) is given in
F

k

M (t)

y (t)

Fig. 1. The single degree of freedom oscillator.
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Ref. [1], and goes back to the 18th and 19th century. In the mathematical analysis of Eq. (1) it turns out to
be convenient to separate the mass MðtÞ into a time-invariant part M0 and into a time-varying part mðtÞ,
that is,

MðtÞ ¼M0 �mðtÞ, (2)

where M0 is a positive constant, and M0 �mðtÞ40. By substituting Eq. (2) into Eq. (1) it follows that Eq. (1)
can be rewritten in:

d

dt
ðM0 �mðtÞÞ

dy

dt

� �
þ ky ¼

�dm

dt
wþ F . (3)

To study the free vibrations of the oscillator the right-hand side of Eq. (3) should be taken equal to zero
(or equivalently take w ¼ 0 and F ¼ 0). Then, by introducing the time-rescaling t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM0=kÞ

p
t it follows that

Eq. (3) becomes

ðð1� hððtÞÞy0Þ0 þ y ¼ 0, (4)

where the prime denotes differentiation with respect to t, and where hðtÞ ¼ mð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM0=kÞ

p
tÞ=M0 with

1� hðtÞ40. In this paper it will be assumed that hðtÞ is a periodic step function, that is,

hðtÞ ¼
e for 0otoT0;

0 for T0otoT

(
(5)

and hðtþ TÞ ¼ hðtÞ, and e is a constant (in practice usually small) with 0oeo1. It should be observed
that in the analysis e is defined to be the quotient m=M0 , where m is the mass which is added at time T0, and
where M0 is the mass of the oscillator. So, e can be seen as a measure for the relative mass which is added
time T0. In Section 2 of this paper an initial value problem for Eq. (4) with hðtÞ given by Eq. (5) will be
studied. In particular, stability diagrams will be presented for different values of e;T0, and T with 0oeo1,
and 0oT0oT . Finally, in Section 3 of this paper some remarks will be made and some conclusions
will be drawn.

2. On the stability of the oscillator

In this section, Eq. (4) for t40 will be studied subject to the following initial values at t ¼ 0:

yð0Þ ¼ y0;

y0ð0Þ ¼ y00;

(
(6)

where y0 and y00 are constants. For 0otoT0 the following equation

ð1� eÞy00 þ y ¼ 0 (7)

has to be solved subject to Eq. (6). The initial value problem for Eq. (7) can readily be solved, yielding for
0otoT0:

yðtÞ

y0ðtÞ

 !
¼M1ðtÞ

y0

y00

 !
, (8)

where the ð2� 2Þ-matrix M1ðtÞ is given by

M1ðtÞ ¼

cos
tffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� � ffiffiffiffiffiffiffiffiffiffiffi
1� �
p

sin
tffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� �
�1ffiffiffiffiffiffiffiffiffiffiffi
1� e
p sin

tffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� �
cos

tffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� �
0
BBB@

1
CCCA. (9)

At t ¼ T0 a jump discontinuity occurs in the coefficient hðtÞ in (4). The displacement function yðtÞ, however, is
continuous at t ¼ T0. Then, it follows from (4) that also ðð1� hðtÞÞy0Þ0 is continuous at t ¼ T0. And so,
ð1� hðtÞÞy0 should be continuous at t ¼ T0. So, in the infinitesimal small interval T0 � 0ptpT0 þ 0 it
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follows that:

ðT0 þ 0Þ ¼ yðT0 � 0Þ,

y0ðT0 þ 0Þ ¼ ð1� eÞy0ðT0 � 0Þ, ð10Þ

where yðT0 � 0Þ and yðT0 þ 0Þ are the limits of yðT0Þ when T0 is approached from the left and from the right
side, respectively. For T0 � 0otoT0 þ 0 Eqs. (10) can be used to obtain:

yðtÞ

y0ðtÞ

 !
¼M2ðtÞ

yðT0 � 0Þ

y0ðT0 � 0Þ

 !
¼M2ðtÞM1ðT0Þ

y0

y00

 !
, (11)

where the ð2� 2Þ-matrix M2ðtÞ is given by

M2ðtÞ ¼
1 0

0 1� e

� �
. (12)

For T0otoT Eq. (4), given by y00 þ y ¼ 0, now has to be solved subject to the initial values given at
t ¼ T0 þ 0. This initial value problem can readily be solved, yielding for T0otoT :

yðtÞ

y0ðtÞ

 !
¼M3ðtÞM2ðT0ÞM1ðT0Þ

y0

y00

 !
, (13)

where the ð2� 2Þ-matrix M3ðtÞ is given by

M3ðtÞ ¼
cosðt� T0Þ sinðt� T0Þ

� sinðt� T0Þ cosðt� T0Þ

 !
. (14)

At t ¼ T a jump discontinuity again occurs in the coefficient hðtÞ in Eq. (4). Since the displacement function
yðtÞ is continuous at t ¼ T it again follows from Eq. (4) that ð1� hðtÞÞy0 should be continuous at t ¼ T . So, in
the infinitesimal small interval T � 0ptpT þ 0 it follows that:

yðT þ 0Þ ¼ yðT � 0Þ,

y0ðT þ 0Þ ¼
1

1� e
y0ðT � 0Þ: ð15Þ

For T � 0otoT þ 0 Eqs. (15) can be used to obtain

yðtÞ

y0ðtÞ

 !
¼M4ðtÞM3ðTÞM2ðT0ÞM1ðT0Þ

y0

y00

 !
, (16)

where the ð2� 2Þ-matrix M4ðtÞ is given by

M4ðtÞ ¼
1 0

0 1
1�e

 !
.

So far the solution of the initial-value problem for Eq. (4) has been constructed on the interval 0ptpT þ 0.
To obtain the solution on the interval nTptpðnþ 1ÞT þ 0 (with n ¼ 1; 2; 3; . . .) use can again be made of
Eqs. (8), (11), (13), and (15), yielding

yðtÞ

y0ðtÞ

 !
¼M1ðt� nTÞ:ðM4ðTÞM3ðTÞM2ðT0ÞM1ðT0ÞÞ

n
y0

y00

 !

for nTotonT þ T0, and so on. The stability of the solutions is completely determined by the eigenvalues l of
the matrix

A ¼M4ðTÞM3ðTÞM2ðT0ÞM1ðT0Þ. (17)

If at least one of the moduli of the eigenvalues of matrix A is larger than 1, then a solution of Eq. (4) can grow
exponentially like exp ððt=TÞ ln jljÞ, where l is an eigenvalue of matrix A as given by Eq. (17). Matrix A has the
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following form:

A ¼

ab�
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

cd
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

bcþ ð1� eÞ ad

�1

1� e
ad �

1ffiffiffiffiffiffiffiffiffiffiffi
1� e
p bc

�1ffiffiffiffiffiffiffiffiffiffiffi
1� e
p cd þ ab

0
B@

1
CA, (18)

where

a ¼ cos
T0ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� �
; b ¼ cosðT � T0Þ; c ¼ sin

T0ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� �
; and d ¼ sinðT � T0Þ. (19)

Matrix A has the following properties:

detðAÞ ¼ detðM4ðTÞÞ detðM3ðTÞÞ detðM2ðT0ÞÞdetðM1ðT0ÞÞ

¼
1

1� e
:1:1:ð1� eÞ ¼ 1,

trðAÞ ¼ 2ab�
ð2� eÞffiffiffiffiffiffiffiffiffiffiffi
1� e
p cd, ð20Þ

where detðAÞ is the determinant of A, and trðAÞ is the trace of A, respectively, and where a, b, c, and d are given
by Eq. (19). The eigenvalues l1;2 of matrix A are given by (using Eq. (20)):

l1;2 ¼ 1
2
trðAÞ � 1

2

ffiffiffiffi
D
p

, (21)

where

D ¼ ðtrðAÞÞ2 � 4 detðAÞ ¼ ðtrðAÞÞ2 � 4. (22)

To determine the stability of the solutions three cases have to be considered: Do0;D40, and D ¼ 0. For
Do0 or equivalently for �2otrðAÞo2 it follows from Eq. (21) that l1;2 ¼ 1

2
trðAÞ � ði=2Þ

ffiffiffiffiffiffiffiffi
�D
p

, implying (using
Eq. (22))

jl1;2j2 ¼ 1
4
ðtrðAÞÞ2 � 1

4
D ¼ 1.

So, for Do0 the free vibrations of the oscillator are stable (that is, there is no exponential or linear growth in
time of the oscillations). For D40 or equivalently for trðAÞo� 2 or trðAÞ42 it follows from Eq. (21) that one
of the eigenvalues l1;2 has a modulus which is larger than 1. So for D40 the free vibrations of the oscillator
are unstable (that is, there is exponential growth in time of the oscillations). For D ¼ 0 or equivalently for
trðAÞ ¼ 2 or trðAÞ ¼ �2 it follows from Eq. (21) that l ¼ 1 when trðAÞ ¼ 2, and l ¼ �1 when trðAÞ ¼ �2. In
both cases the multiplicity of the eigenvalues is two. When the dimension of the eigenspace belonging to the
eigenvalue l ¼ 1 (or l ¼ �1) is equal to two the free vibrations of the oscillator will be stable else the
vibrations will grow linearly in time. The dimension of the eigenspace belonging to the eigenvalue l ¼ 1 (or
l ¼ �1) with multiplicity two is two if and only if A� lI ¼ O, where I is the ð2� 2Þ identity matrix, and O the
ð2� 2Þ zero matrix. For l ¼ 1 it follows that A� I ¼ O is equivalent with the system

ab�
ffiffiffiffiffiffiffiffiffiffiffi
1� �
p

cd � 1 ¼ 0,ffiffiffiffiffiffiffiffiffiffiffi
1� �
p

bcþ ð1� eÞ ad ¼ 0,

�1

1� �
ad �

1ffiffiffiffiffiffiffiffiffiffiffi
1� e
p bc ¼ 0,

�1ffiffiffiffiffiffiffiffiffiffiffi
1� e
p cd þ ab� 1 ¼ 0, ð23Þ

where a, b, c, and d are given by Eq. (19). The second and the third equation in system (23) can be rewritten in:ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

1� e
�1ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

�1

1� e

0
B@

1
CA bc

ad

� �
¼

0

0

� �
. (24)
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Since the determinant of the coefficient-matrix in Eq. (24) is equal to �e=
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

, which is nonzero for 0oeo1,
it follows from Eq. (24) that bc ¼ 0 and ad ¼ 0. Using Eq. (19) it then follows that a ¼ b ¼ 0 or c ¼ d ¼ 0.
When a ¼ b ¼ 0 it follows from the first and the last equation in Eq. (23) that cd ¼ �1=

ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

and
cd ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

, which is impossible for 0oeo1. When c ¼ d ¼ 0 it follows from Eq. (23) that ab ¼ 1. So, for
l ¼ 1, that is, for trðAÞ ¼ 2 the dimension of the eigenspace for the eigenvalue l ¼ 1 is only equal to two when
(using Eq. (19)):

e ¼ 0

d ¼ 0

ab ¼ 1

8><
>: )

sin
T0ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� �
¼ 0

sinðT � T0Þ ¼ 0

cos
T0ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

� �
cosðT � T0Þ ¼ 1

8>>>>><
>>>>>:

)

T0 ¼ n1p
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

T1 � T0 ¼ n2p

ð�1Þn1 :ð�1Þn2 ¼ 1

8><
>: (25)

with n1ENþ, n2ENþ, and n1 þ n2 is even. For l ¼ �1 a completely similar analysis can be given (replace in the
first and in the last equation of Eq. (23) �1 by þ1, and replace in Eq. (25) ab ¼ 1 by ab ¼ �1), yielding

Eq. (25) but now with n1 þ n2 is odd. So, for D ¼ 0, and T0 ¼ n1p
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

and T1 ¼ T0 þ n2p with n1; n2ENþ
0 5 10 15
0

5

10

15

T

T0

Fig. 2. Stability and instablity regions for the free vibrations of the oscillator with e ¼ 0:25 and 0pT0pTp5p (grey colouring: unstable;

white colouring: stable; continuous lines: unstable; o points: stable).

0 5 10 15
0

5

10

15

T

T0

Fig. 3. Stability and instability regions for the free vibrations of the oscillator with e ¼ 0:5 and 0pT0pTp5p (grey colouring: unstable;

white colouring: stable; continuous lines: unstable; o points: stable).
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Fig. 4. Stability and instablity regions for the free vibrations of the oscillator with e ¼ 0:75 and 0pT0pTp5p (grey colouring: unstable;

white colouring: stable; continuous lines: unstable; o points: stable).
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the free vibrations of the oscillator will be stable. In all other cases for D ¼ 0 the free vibrations will be
unstable (that is, the oscillations will grow linearly in time). So far, it can be concluded that for trðAÞX2 and

for trðAÞp� 2 (except for those values of T and T0 for which D ¼ 0, T0 ¼ n1p
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

, and T1 ¼ T0 þ n2p
with n1; n2ENþ) the free vibrations of the oscillator are unstable, and that for 2otrðAÞo2 the free oscillations
are stable. So, the boundaries of the (in-)stability regions are give by trðAÞ ¼ 2 and trðAÞ ¼ �2, where

trðAÞ ¼ 2 cosðT0=
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

Þ cosðT � T0Þ � ð2� eÞ=
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

sinðT0=
ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

Þ sinðT � T0Þ. In Figs. 2–4 the instabil-
ity regions (indicated by a grey colouring) and the stability region (indicated by a white colouring) in the
ðT0;TÞ-plane are given for e ¼ 0:25, 0.5, and 0.75, respectively. From Figs. 2–4 it is clear that for larger values
of e the instability regions also become larger.

3. Conclusions and remarks

In this paper the stability of the free vibrations of a linear, single degree of freedom oscillator with a periodically
and stepwise changing time-varying mass has been studied. By adding a mass m at time T0 to the oscillator with
mass M0, by removing this amount of mass at time T4T0, and by repeating this procedure with period T, it has
been shown mathematically that for certain intervals of the parameter values e ¼ m=M0, T0, and T the free
vibrations of the oscillator can be unstable. In the presented analysis it has been assumed that 0oe ¼ m=M0o1,
that is, it has been assumed that the added mass m at time T0 is smaller than the mass M0 of the oscillator. This
instablity mechanism may serve as a very simple (sub-) model to describe certain aspects of instability for the rain-
wind induced oscillations of elastic structures such as cables in windfields with water rivulets on the cable-surfaces.
To obtain more realistic models periodically and multi-stepwise changing time-varying masses can be considered.
Also the velocity at which masses are hitting or leaving the oscillator can be taken into account (see Eq. (3). Other
external forces (such as drag- and lift forces, damping forces, and so on) can be included in the model equation (3).
The aforementioned extensions to the model equation (4) can be interesting subjects for future research.
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